Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.
نویسندگان
چکیده
Previously we presented a quantitative description of the spatiotemporal pattern of inhibitory synaptic input from the heartbeat central pattern generator (CPG) to segmental motor neurons that drive heartbeat in the medicinal leech and the resultant coordination of CPG interneurons and motor neurons. To begin elucidating the mechanisms of coordination, we explore intersegmental and side-to-side coordination in an ensemble model of all heart motor neurons and their known synaptic inputs and electrical coupling. Model motor neuron intrinsic properties were kept simple, enabling us to determine the extent to which input and electrical coupling acting together can account for observed coordination in the living system in the absence of a substantive contribution from the motor neurons themselves. The living system produces an asymmetric motor pattern: motor neurons on one side fire nearly in synchrony (synchronous), whereas on the other they fire in a rear-to-front progression (peristaltic). The model reproduces the general trends of intersegmental and side-to-side phase relations among motor neurons, but the match with the living system is not quantitatively accurate. Thus realistic (experimentally determined) inputs do not produce similarly realistic output in our model, suggesting that motor neuron intrinsic properties may contribute to their coordination. By varying parameters that determine electrical coupling, conduction delays, intraburst synaptic plasticity, and motor neuron excitability, we show that the most important determinant of intersegmental and side-to-side phase relations in the model was the spatiotemporal pattern of synaptic inputs, although phasing was influenced significantly by electrical coupling.
منابع مشابه
Heartbeat control in leeches. II. Fictive motor pattern.
The rhythmic beating of the tube-like hearts in the medicinal leech is driven and coordinated by rhythmic activity in segmental heart motor neurons. The motor neurons are controlled by rhythmic inhibitory input from a network of heart interneurons that compose the heartbeat central pattern generator. In the preceding paper, we described the constriction pattern of the hearts in quiescent intact...
متن کاملA central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.
The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilatera...
متن کاملSynaptic Input to Motor Neurons from a Cpg Synaptic Input to Motor Neurons from a Cpg Synaptic Input to Motor Neurons from a Cpg 2
A central pattern generator producing alternative outputs: Pattern, strength and dynamics of premotor synaptic input to leech heart motor neurons. $ These authors contributed equally to the paper and are listed alphabetically. ABSTRACT The central pattern generator (CPG) for heartbeat in medicinal leeches comprises 7 identified pairs of segmental heart interneurons and one unidentified pair. Fo...
متن کاملA central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.
The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ...
متن کاملA central pattern generator producing alternative outputs: temporal pattern of premotor activity.
The central pattern generator for heartbeat in medicinal leeches constitutes seven identified pairs of segmental heart interneurons. Four identified pairs of heart interneurons make a staggered pattern of inhibitory synaptic connections with segmental heart motor neurons. Using extracellular recording from multiple interneurons in the network in 56 isolated nerve cords, we show that this patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2008